
Jammin' on the Web - a new Client/Server Architecture for Multi-User Musical Performance

Philip L Burk, philburk@softsynth.com
http://www.transjam.com

di-

 of

st

in

ple
ns

ys-

D

s

e

 it is
ne or
ABSTRACT
This paper describes a software system called the Tran-

sJam Server that allows several musicians to log into an
Internet web site and perform music together. The system
is general purpose so programmers can develop web based
applications in a variety of styles. A single server can sup-
port several different applications simultaneously, for
example musical applications, games, or conferencing. A
simple protocol allows clients to enter a lobby, obtain a list
of active sessions, join a session, and then exchange infor-
mation with other members of the session. Server opera-
tions such as object locking and data broadcasting allow
users to create and edit shared data objects without cor-
rupting them. The server is written in 'C' and runs on PC or
Unix based hosts with low overhead.

Client applications are typically written in 'C' or Java. A
chat feature is available which allows musicians to discuss
musical strategies and to interact socially. The Java version
can be used with a number of audio APIs including JSyn,
JMIDI, or SUN's new JavaAudio. Applications must be
designed to work well despite Internet latencies. Examples
include drum boxes, algorithmic music generators, or
“ambient” synthesis environments.

1 INTRODUCTION
The goal of this project is to enable musicians to perform

together through the Internet. Surfing the web is usually a
very lonely activity. There may be hundreds of people vis-
iting a web site simultaneously, but there is often no way
for them to communicate. Chat software allows people to
exchange text messages in real-time. And game sites pro-
vide activities besides chatting, like chess or card games.
But performing music together on the web is difficult
because of two major obstacles. One is the lack of high
fidelity sound generation in the default browser. The
JSyn[1] Audio Synthesis API was designed to address that
need. The other obstacle is that Java Applets running in a
web browser need a way to find each other, and exchange
musical information. TransJam was designed to address
those needs.

Other systems have recently been developed for network
based music interaction. Yamagishi & Setoh [4] developed
a system that controlled Max running on a server through
CGI scripts submitted from a browser. The resulting music
was broadcast back to the user via RealAudio.

This project was inspired by the work of the pioneering
network band, “The Hub”.[2] The Hub consisted of Chris
Brown, John Bischoff, Scot Gresham-Lancaster, Tim
Perkis, Phil Stone and Mark Trayle. They performed live
interactive compositions that involved exchanging infor-

mation through a star network with a central hub. Mem-
bers would propose a network protocol for a piece that
would then be implemented by each member on their in
vidual computers. My hope is that this server will enable
composers to create networked compositions in the style
the Hub and to run them on the web.

2 COMPONENTS

2.1 Server Software. The TransJam Server must run on
the same computer that serves the web pages. This is
because Java Applets can only open a socket on that ho
computer. Applets are prevented from connecting to a
socket on other computers by the security mechanisms
Java and the browser.

One of my design goals was to make the server as sim
as possible. The server, therefore, only provides functio
that can be implemented by a server but not by a Java
Applet. These functions are similar to the functions that
are provided to processes by a multi-tasking operating s
tem. They include semaphores, inter-client communica-
tion, synchronization and record locking.

The TransJam Server is written in ‘C’ and uses the BS
socket library.[3] It was originally coded as a multi-
threaded application with one thread per client. But I wa
able to reimplement it as a single thread by using the
select() function to wait on multiple clients. This made th
code more robust and simplified the coding of atomic
operations such as record locking.

The server waits for new clients to log in, or for existing
clients to send messages. When a message is received
processed and the server may then send messages to o
more clients. The socket connection is maintained the
entire time the client is logged in so that the server may
send any client messages at any time.

HTTP Server TransJam Server

Website

Macintosh

JSyn Applet

Client API

JSyn Applet

Client API

PC

NO

n-

f

et

-
-

n-

p-

of

re

en

A client is always associated with a session. A session
contains a list of clients and a list of things that can be
shared among the clients. When the client first logs in, they
are placed in a top level session called a lobby. A single
server can support multiple applications, like chess or a
webdrum. Each application has its own unique lobby.

Each lobby can have multiple child sessions. Users can
either create their own new session, or join an existing ses-
sion. Sessions can be nested arbitrarily deep under the con-
trol of the application.

Clients can communicate with other clients in the same
session by sending messages through the server. A simple
example would be a chat application that sent text mes-
sages to all of the users in the session.

2.2 Shared Data Base in RAM. If clients wish to edit a
shared data structure, for example a melody or drum pat-
tern, then they must ensure that their edits do not interfere
with each other. If the edits are not properly synchronized,
then one persons changes may be lost. The same problems
can occur in a company data-base that is being updated by
multiple persons. The server, therefore, maintains what is
essentially an in-memory data base. Each record, or thing,
has a name and an associated string that contains the state
of the record. In order for things to be edited, they must be
owned by a client. The server manages ownership and pre-
vents clients from editing things that they don’t own.

When clients leave a session, the things that they owned
are marked as not owned but are not deleted because they
may still be in use by the application. When the last client
leaves a session, however, every thing is deleted and the
session is then deleted as well. The server does not keep
data that is not being used, and writes nothing to disk
except trace logs.

2.3 Java Client API. A set of Java classes is provided that
handles communication with the server. A separate thread
waits for messages from the server, parses the network
packet, and then calls back to a listener with the message.
A subclass of Panel is provided that manages the GUI and
the transactions involved in logging in to the server and
selecting a session.

2.4 Java Applications. The programmer can use the
server from a Java application, or an Applet that runs in a
browser. No plug-ins are required to use the server because
network transactions with the hosting server are allowed
by the Java security manager.

3 CLIENT/SERVER PROTOCOL

3.1 Message Format. All messages sent between the cli-
ent and server have the same format.

Key - byte that identifies start of message.
Command - byte opcode.
PayloadSize - short containing size in bytes of optional

text string.
Num1,2,3,4 - longs that hold message parameters such

as session IDs, client IDs, etc.

Payload - optional byte array up to 2**16 in length for
names and encoded state information.

3.2 Commands between Client and Server. There are
approximately 50 different commands that can be sent
between the client and server. Here is a partial list of the
most important commands:

• create/join session,
• request list of available sessions,
• create thing,
• lock/unlock thing for editing,
• modify/query thing,
• send specific user a private message,
• send message to all users in same session (chat),
• error reports from server such as “command out of co

text” or “invalid ID”,
• administration commands such as querying number o

clients and sessions, memory usage, shutdown, etc.

4 DESIGN ISSUES

4.1 Latency and Bandwidth. Latency is defined, in this
case, as the maximum time it takes to send a small pack
from the client to the server, and to receive a reply. The
server is pretty responsive as long as it is not swamped
with users. So the bulk of the latency is due to the round
trip travel over the Internet. Here are some Internet laten
cies measured using PING from my office near San Fra
cisco:

Because a latency of 100 to 300 milliseconds is very ty
ical, it is not practical to engage in a traditional real-time
“jam” where musicians play “in time” with each other. So
the interaction between musicians must take place “out
time” where the arrival time of a message is not critical.
The most suitable type of applications are ones that
involve indirectly controlling a real-time music generating
process. Examples include editing a looping data structu
such as in a “drum box”, or modifying parameters that
control an algorithmic sequence generator.

Since we are only sending control information and not
PCM audio data, bandwidth is not an important issue, ev
over a 56K modem.

4.2 Simultaneity and Synchronization. In applications
where the users are editing a looping data structure from

Table 1: Typical Latency

Location Milliseconds

my ISP, California 13-140

CNMAT, California 90-300

ATR, Japan 220-350

STEIM, Netherlands 220-400

QUT, Australia 330-500

le
t

r
at
re

v-
n-
er

n a
r
ing

d
u-

e

is
v
remote locations, it is not necessary for them to be syn-
chronized. One person may be hearing the beginning of the
loop when the other is hearing the middle. But in some
cases, more than one user may be in the same location.
This occurred at the NUMUS 2000 festival where we had
four Macintoshes playing the WebDrum in the same room.
For this event I added a feature that allowed users in a ses-
sion to synchronize themselves.

The synchronization is triggered when a user hits the
“Sync” button in the Applet. This causes a message to be
sent to the server with a command to relay the message to
all of the clients in the session, including the requester.
Encoded in the message is the current beat index of the
user who hit the Sync button. As each client receives the
message they force their timing to that specific beat. Some
of the clients may be in locations that are near or far from
the server, so the messages will not all arrive at the same
time. But is likely that the messages will arrive at nearly
the same time for computers in the same room. Thus the
computers who are within earshot of each other will be
synchronized reasonably well.

4.3 Impact on Host Computer. Servers are often run on
systems shared by many users, and should have minimal
impact on the host computer. I initially wrote the server in
Java which was a very pleasant experience. But getting a
Java program to run on my ISP’s computer was problem-
atic. I had to fit within a 300 KB RAM limit, but a mini-
mum Java program consumed over 3 MB. Also some host
computers do not have Java available so I decided to

rewrite the server in ‘C’ which is quite portable for this
type of application. The server consumes an imperceptib
amount of CPU time to run the WebDrum but the amoun
would obviously increase with the number of clients.

4.4 Scalability. The current server is limited in the numbe
of clients it can handle by the number of open sockets th
can be created. It is currently a two tier architecture whe
all clients are handled by one server. To scale to larger
applications, a three tier architecture would need to be
developed where clients communicated with multiple ser
ers on the middle tier. The mid level servers would conce
trate information and pass it up to a single very large serv
at the top level.

5 .WEBDRUM EXAMPLE

5.1 Program Overview. The WebDrum was designed to
test the capabilities of the TransJam server. It is based o
traditional drum pattern editor where the user turns on o
off notes on a grid. The drum sounds are synthesized us
JSyn[1], a Java audio synthesis API developed by the
author. JSyn has an event buffer for time-stamping soun
events so the drum patterns can be played with very acc
rate timing. By using synthetic drum sounds we eliminat
the need to download large audio sample files. JSyn is
available at:

 http://www.softsynth.com/jsyn
Drum sounds are generating using a variety of synthes

techniques including FM, WaveShaping using Chebyshe

the

en

me

nt
-
he

 a
s

o

ed,

o

an-

n-
polynomials, filtered sawtooth waves, ring modulation for
bells, and a Karplus-Strong plucked string sound.

5.2 User Interface. Users can add instruments of various
types:

• Drums = single pitch, turn on/off beat,
• Melody grids = N pitches in a pentatonic just intona-

tion, 1:1, 5:4, 4.:3, 3:2, 5:3
• Envelopes = editing contours of a parameter, for exam-

ple, frequency.
The program uses a Java interface for instruments that is

very generic. This will make it easy to add algorithmic pat-
tern generators and other types of “drums” to the mix.

The number of beats in the pattern can be selected before
creating the instruments. This allows musicians to experi-
ment with poly-rhythms. At the moment, all notes have the
same length.

The “Own” button allows a user to grab an instrument
from another player. This uses the record locking feature
of the server which prevents editing collisions. The name
of the owner of a drum is displayed beside the drum.

I placed a check box to the left of the drum that reverses
the direction of the playback. I intentionally left it unla-
beled so that people could discover its function.

6 LESSONS LEARNED

6.1 NUMUS 2000 Festival. I observed many people using
the WebDrum at an installation for the NUMUS 2000 Fes-
tival in Aarhus. The program was quite stable and was well
received by the festival goers. Many people were jamming
locally but there were few US participants because of the
time zone difference. Most users exercised all of the fea-
tures and seemed to enjoy the social aspects of the chat
feature while they were jamming.

As usual, no one read the instructions so most of the user
training came from people standing around, or through the
chat window. This installation at NUMUS revealed a num-
ber of areas where the program could be improved.

6.2 The Two-Step Problem. There are some parts of the
GUI that require people to perform two steps in order to
get one result. One is adding a drum. They must currently
select their drum from the list of drums. Then hit the
“Add” button to add the drum to the list of available
drums. This completely stumped many users. So I may
start with a pre-loaded set of drums. When users get profi-
cient they could then add or subtract drums using a one-
step process. Joining existing sessions also requires a
“select then join” process which could be replaced by a
simple set of buttons that will join a session in one click.

6.3 Screen Area. I am not making very efficient use of the
screen. As people add drums, particularly melody grids
and envelopes, the chat box gets pushed off the screen.
This makes it hard sometimes to get a message to a person
when desired. I need to conserve screen space and may

move the chat box to a separate window that floats over
drums.

6.4 No One to Play With. The WebDrum is not yet a pop-
ular web site. So when people log in they often have no
one to play with. This discourages them from coming
back. This is a positive feedback cycle that must be brok
in order for a multi-user site to succeed. I plan to add an
appointment system so people can schedule a time to co
back and meet with others. Scheduling would have to be
based on Greenwich Mean Time to accommodate differe
time zones. Another technique might be to schedule spe
cial events when several people are likely to show up at t
same time.

I have a DSL line to my office so I can sometimes leave
machine playing an empty drum pattern. If someone log
in and starts making sound I can hear them and join in.

6.5 Idle Lines get Dropped. Some phone connections
have the annoying property of disconnecting if there is n
activity for a certain length of time. This can happen if
people stop playing and just listen to a piece for a while.
Since the server expects the client to always be connect
the client is logged out permanently when the line is
dropped. I may either add a feature that allows a client t
log back in and recover their session if disconnected, or
provide an option to ping the server periodically to keep
the line alive.

7 AVAILABILITY
The server software runs on Windows and UNIX sys-

tems. The client runs on any system that supports the st
dard Java platform. Binary versions for a limited number
of clients can be obtained for free from the author for no
commercial research and artistic purposes.

REFERENCE
[1] Burk, Phil. 1998. “JSyn - A Real-time Synthesis API

for Java” Proceeding of the International Computer
Music Conference 98:252-255

[2] Hub Network Band, collected scores at “http://
tesla.csuhayward.edu/history/08_Computer/
Hub/hubspecs.html ”, CDs at “http://www.arti-
fact.com/wreckball.html ”

[3] Stevens, W. Richard, UNIX Network Programming,
Volume 1: Networking APIs - Sockets and XTI, 1997,
Prentice Hall; ISBN: 013490012X

[4] Yamagishi & Setoh, 1998 “Variations for the WWW -
Network Music by Max and the WWW”, Proceeding of
the International Computer Music Conference 98:510-
513

	ABSTRACT
	1 INTRODUCTION
	2 COMPONENTS
	2.1 Server Software. The TransJam Server must run on the same computer that serves the web pages....
	2.2 Shared Data Base in RAM. If clients wish to edit a shared data structure, for example a melod...
	2.3 Java Client API. A set of Java classes is provided that handles communication with the server...
	2.4 Java Applications. The programmer can use the server from a Java application, or an Applet th...

	3 CLIENT/SERVER PROTOCOL
	3.1 Message Format. All messages sent between the client and server have the same format.
	3.2 Commands between Client and Server. There are approximately 50 different commands that can be...

	4 DESIGN ISSUES
	4.1 Latency and Bandwidth. Latency is defined, in this case, as the maximum time it takes to send...
	Table 1: Typical Latency

	4.2 Simultaneity and Synchronization. In applications where the users are editing a looping data ...
	4.3 Impact on Host Computer. Servers are often run on systems shared by many users, and should ha...
	4.4 Scalability. The current server is limited in the number of clients it can handle by the numb...

	5 .WEBDRUM EXAMPLE
	5.1 Program Overview. The WebDrum was designed to test the capabilities of the TransJam server. I...
	5.2 User Interface. Users can add instruments of various types:

	6 LESSONS LEARNED
	6.1 NUMUS 2000 Festival. I observed many people using the WebDrum at an installation for the NUMU...
	6.2 The Two-Step Problem. There are some parts of the GUI that require people to perform two step...
	6.3 Screen Area. I am not making very efficient use of the screen. As people add drums, particula...
	6.4 No One to Play With. The WebDrum is not yet a popular web site. So when people log in they of...
	6.5 Idle Lines get Dropped. Some phone connections have the annoying property of disconnecting if...

	7 AVAILABILITY

	REFERENCE
	[1] Burk, Phil. 1998. “JSyn - A Real-time Synthesis API for Java” Proceeding of the International...
	[2] Hub Network Band, collected scores at “http:// tesla.csuhayward.edu/history/08_Computer/ Hub/...
	[3] Stevens, W. Richard, UNIX Network Programming, Volume 1: Networking APIs - Sockets and XTI, 1...
	[4] Yamagishi & Setoh, 1998 “Variations for the WWW - Network Music by Max and the WWW”, Proceedi...

